5 resultados para Lipopolysaccharides

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Periodontal disease may cause several complications of pregnancy, including fetal death. The purpose of this study was to investigate in sheep the effects of the intra-amniotic injection of lipopolysaccharide from 3 periodontopathic organisms and to compare these effects with those resulting from similar injection of Escherichia coli lipopolysaccharide. The outcomes that were studied included the rates of fetal death and the features of inflammation and lung maturation in survivors. Study design: At 118 days of pregnancy, ewes that were bearing single fetuses were allocated at random to receive intra-amniotic injections of saline solution (n = 13 fetuses), or lipopolysaccharide from Porphyromonas gingivalis (in doses from 0.1 to 10 tug [n = 22 fetuses]), Actinobacillus actinomycetemcomitans (10 mg [n = 6 fetuses]; 1 mg [n = 6 fetuses]), Fusobacterium nucleation (10 mg [n = 6 fetuses]) or Escherichia coli (10 mg [n = 14 fetuses]; 1 mg [n = 7 fetuses]). Surviving fetuses were delivered abdominally at 125 days of gestation (term, 150 days). Results: When compared with Escherichia coli lipopolysaccharide at similar dosages, periodontopathic lipopolysaccharides had high rates of fetal lethality. Only 6 of 22 fetuses that were exposed to intra-amniotic Porphyromonas gingivalis lipopolysaccharide survived doses of 0.1 to 10 mg, and only 3 of 6 fetuses survived 10-mg Actinobacillus actinomycetemcomitans lipopolysaccharide. Escherichia coli lipopolysaccharide did not cause fetal loss when given at doses of 10 mg (n = 14 fetuses) or l mg (n = 7 fetuses). Fetuses that survived exposure to these lipopolysaccharides showed features of inflammation in amniotic fluid and cord blood at birth and enhanced lung maturation. Conclusion: Lipopolysaccharides from these 3 periodontopathic organisms have much higher rates of fetal lethality than Escherichia coli lipopolysaccharide but can cause similar intrauterine inflammatory responses and improvements in lung volumes in survivors. Sources of inflammation that are distant from the uterus may underlie a proportion of unexplained stillbirth and other complications of pregnancy. (c) 2005 Mosby, Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to determine nitric oxide (NO) production of a murine macrophage cell line (RAW 264.7 cells) when stimulated with Porphyromonas gingivalis lipopolysaccharides (Pg-LPS). RAW264.7 cells were incubated with i) various concentrations of Pg-LPS or Salmonella typhosa LPS (St-LPS), ii) Pg-LPS with or without L-arginine and/or N-G-monomethyl-L-arginine (NMMA), an arginine analog or iii) Pg-LPS and interferon-gamma (IFN-gamma) with or without anti-IFN-gamma antibodies or interleukin-10 (IL-10). Tissue culture supernatants were assayed for NO levels after 24 h in culture. NO was not observed in tissue culture supernatants of RAW 264.7 cells following stimulation with Pg-LPS, but was observed after stimulation with St-LPS. Exogenous L-arginine restored the ability of Pg-LPS to induce NO production; however, the increase in NO levels of cells stimulated with Pg-LPS with exogenous L-arginine was abolished by NMMA. IFN-gamma induced independent NO production by Pg-LPS-stimulated macrophages and this stimulatory effect of IFN-gamma could be completely suppressed by anti-IFN-gamma antibodies and IL-10. These results suggest that Pg-LPS is able to stimulate NO production in the RAW264.7 macrophage cell model in an L-arginine-dependent mechanism which is itself independent of the action of IFN-gamma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the conservation and antibody accessibility of inner core epitopes of Neisseria meningitidis lipopolysaccharide (LPS) because of their potential as vaccine candidates. An immunoglobulin G3 murine monoclonal antibody (MAb), designated MAb B5, was obtained by immunizing mice with a galE mutant of N. meningitidis H44/76 (B.15.P1.7,16 immunotype L3). We have shown that MAb B5 can bind to the core LPS of wild-type encapsulated MC58 (B.15.P1.7,16 immunotype L3) organisms in vitro and ex vivo. An inner core structure recognized by MAb B5 is conserved and accessible in 26 of 34 (76%) of group B and 78 of 112 (70%) of groups A, C, W, X, Y, and Z strains. N. meningitidis strains which possess this epitope are immunotypes in which phosphoethanolamine (PEtn) is linked to the 3-position of the beta-chain heptose (HepII) of the inner core. In contrast, N. neningitidis strains lacking reactivity with MAb B5 have an alternative core structure in which PEtn is linked to an exocyclic position (i.e., position 6 or 7) of HepII (immunotypes L2, L4, and L6) or is absent (immunotype L5). We conclude that MAb B5 defines one or more of the major inner core glycoforms of N. meningitidis LPS. These findings support the possibility that immunogens capable of eliciting functional antibodies specific to inner core structures could be the basis of a vaccine against invasive infections caused by N. meningitidis.